Introduction à la mécanique des solides

Notion de système - Notion de modèle

Pour étudier de manière efficace le monde qui l’entoure, l’homme s’est aperçu qu’il est possible de fragmenter l’espace qui nous entoure en différents “ systèmes ” qui “ interagissent ” entre eux.

Exemples de systèmes : une voiture, une balle de tennis, un marcheur, un touret à meuler,......

Exemple d’interactions entre systèmes : le courant électrique crée un champ magnétique, l’arbre s’appuie sur les paliers, l'eau dissout le sel,....

Le monde qui nous entoure est rempli d’objets, d’éléments matériels, qui interagissent entre eux et avec nous. Le nombre de ces interactions est très grand, souvent infini, et toutes ne peuvent être prises en compte dans l’étude d’un système matériel.

Pour l’étude des systèmes matériels, l’homme a donc été amené à ne considérer que certaines interactions, en négligeant les autres. Suivant les résultats qui l’intéressent, il a séparé l’étude des systèmes physiques en différentes disciplines (électricité, chimie, thermique, mécanique,....).

Au sein de chaque discipline, nous sommes amenés à faire des hypothèses sur les systèmes étudiés, et à limiter notre étude dans l’espace et dans le temps. Nous sommes donc amenés à construire des modèles de systèmes, et il ne faut jamais perdre de vue qu’une modélisation n’est pas la réalité, mais seulement une interprétation (généralement basée sur des lois mathématiques) de la réalité, fondée sur des hypothèses plus ou moins justes, plus ou moins précises.

N’oublions jamais qu’on modèle n’est qu’une représentation (très) imparfaite de la réalité.

Dans le cadre de ce cours, nous allons nous intéresser uniquement aux relations mécaniques entre les solides, les relations mécaniques étant celles qui modifient l’état de repos ou de mouvement d’un système matériel ou de certaines de ses parties

Hypothèses utilisées en mécanique classique

En mécanique classique, nous allons étudier :

à des systèmes matériels (dont le contenu matériel est ou non variable) qui existent pendant un intervalle donné de temps dans un espace réel à trois dimensions.

à On admettra que, à chaque instant, le système matériel considéré est constitué d’éléments individualisables, de points matériels.

à Si un ensemble de points matériels est tel que les distances entre chaque point constituant l’ensemble sont constantes, alors cet ensemble de points sera appelé solide. Un solide est donc indéformable.

à La masse d’un élément (d’une partie ou de l’ensemble du système matériel) ne dépend que de la quantité de matière qui le compose).

à On ne retiendra, dans l’ensemble des relations entre le système et le monde extérieur que celles qui modifient l’état de repos ou de mouvement du système ou de certaines de ses parties.

Limites de la mécanique classique

à La mécanique telle que nous l’avons définie ne permet pas d’expliquer et de prévoir les mouvements des très petits systèmes matériels (typiquement les éléments constitutifs de la matière, voire de certaines particules fines (ordre de grandeur : le mm)

à De même, les mouvements des galaxies ne sont pas parfaitement pris en compte par la mécanique classique

à Si la vitesse d’un système est proche de celle de la lumière, de nouveau, la mécanique classique ne s’applique plus, il faut doit utiliser la relativité. (Typiquement si V>0,1C, C étant la vitesse de la lumière dans le vide).

à Il faut se rappeler que dans les modélisations que nous allons effectuer, toutes les interactions entre les systèmes ne sont pas prises en compte, alors que certaines peuvent être importantes pour le système considéré, ou avoir une action à long terme (exemple : les variations de température, ou les problèmes chimiques pour la fatigue des matériaux, la prise en compte des phénomènes de dilatation souvent négligés,....)

Applications

Une application classique du cours de mécanique du solide est le gyroscope, mais, de plus en plus, la robotique et l’automatisation des processus vont nous intéresser. Les systèmes automatisés et les robots doivent être de plus en plus complexes, rapides, précis. La mécanique, couplée à l’informatique, permet de dimensionner et de prévoir des modèles de commande relativement sophistiqués pour optimiser la commande et l’asservissement de robots de plus en plus complexes et rapides, avec une répétabilité toujours améliorée.... Et ce, en temps réel.

Méthodologie

La méthode que nous allons utiliser consiste à s’intéresser successivement à chacun des solides ou ensemble de solides constituant un mécanisme. Il faut isoler le solide.

Nous analyserons alors :

à Ses mouvements : un solide possède six degrés de liberté, et à chaque degré de liberté correspond un paramètre géométrique, linéaire ou angulaire. Deux cas sont alors possibles :

à Soit ce paramètre est connu (on dira asservi). Cela suppose qu’une action mécanique inconnue permet d’obtenir la loi de variation de ce paramètre en fonction du temps

à Soit ce paramètre est inconnu, on dira libre, car il est libre d’évoluer en fonction des lois de la mécanique. L’action mécanique qui s’exerce alors sur ce paramètre est alors connue, éventuellement nulle.

à Les actions mécaniques exercées par le reste du monde, par l’extérieur, sur le solide ou sur l’ensemble de solides. On distinguera entre :

à les actions mécaniques connues, volumiques (poids par exemple) ou surfaciques (pression de contact exercée par un ressort, un amortisseur, ...)

à les actions mécaniques inconnues données généralement par les liaisons

On applique ensuite les lois de la mécanique générale découvertes par Galilée, Newton, Lagrange, Coriolis.........

            (1.1)

Les deux ensembles de vecteurs sont donc équivalents, ils sont représentés par le même torseur. Soit

    (1.2)

Remarque : Définition d’un référentiel galiléen :

à un référentiel galiléen ou d’inertie est un référentiel dans lequel un point matériel isolé a un mouvement rectiligne uniforme.

à Un point matériel isolé étant un point libre de toute interaction

à Les référentiels galiléens n’existent pas dans la nature, nous utiliserons le plus souvent des référentiels quasi-galiléens, qui ne créent que des quantités d’accélérations négligeables par rapport à celles mises en jeux dans nos problèmes.
 

Vectoriellement, ces lois se traduisent par les deux relations suivantes dans lesquelles p est un point de masse mp appartenant à (S), et C un point quelconque.

Théorème du mouvement du centre de masse :

        (1.3)

Théorème du moment dynamique :

    (1.4)

En imposant une somme et un moment dynamique nul, on retrouve les lois de la statique :

        (1.5)

        (1.6)

Savoir et savoir-faire nécessaires à la résolution d’un problème de mécanique

à Distinguer les grandeurs scalaires (masse, loi de mouvement, dimension,...), les grandeurs vectorielles (vecteur force, vecteur vitesse, vecteur accélération, .....), les grandeurs torsorielles représentant des ensembles de vecteurs (action mécanique, quantité de mouvement, quantité d’accélération)....

à Effectuer des calculs sur ces grandeurs

à Modéliser un mécanisme, distinguer repère et base, choisir un ou des systèmes de coordonnées, des paramètres

à Ecrire les équations, correspondant au modèle choisi, qu’elles soient algébriques, différentielles ou algébro-différentielles

à Analyser les résultats, avec un regard suffisamment critique....

Plan d’étude d’un système mécanique

Retour au sommaire du cours de mécanique